Ninth International Olympiad, 1967

1967/1.

Let $A B C D$ be a parallelogram with side lengths $A B=a, A D=1$, and with $\angle B A D=\alpha$. If $\triangle A B D$ is acute, prove that the four circles of radius 1 with centers A, B, C, D cover the parallelogram if and only if

$$
a \leq \cos \alpha+\sqrt{3} \sin \alpha .
$$

1967/2.
Prove that if one and only one edge of a tetrahedron is greater than 1 , then its volume is $\leq 1 / 8$.

1967/3.
Let k, m, n be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_{s}=s(s+1)$. Prove that the product

$$
\left(c_{m+1}-c_{k}\right)\left(c_{m+2}-c_{k}\right) \cdots\left(c_{m+n}-c_{k}\right)
$$

is divisible by the product $c_{1} c_{2} \cdots c_{n}$.
$1967 / 4$.
Let $A_{0} B_{0} C_{0}$ and $A_{1} B_{1} C_{1}$ be any two acute-angled triangles. Consider all triangles $A B C$ that are similar to $\Delta A_{1} B_{1} C_{1}$ (so that vertices A_{1}, B_{1}, C_{1} correspond to vertices A, B, C, respectively) and circumscribed about triangle $A_{0} B_{0} C_{0}$ (where A_{0} lies on $B C, B_{0}$ on $C A$, and $A C_{0}$ on $A B$). Of all such possible triangles, determine the one with maximum area, and construct it.
1967/5.
Consider the sequence $\left\{c_{n}\right\}$, where

$$
\begin{aligned}
c_{1}= & a_{1}+a_{2}+\cdots+a_{8} \\
c_{2}= & a_{1}^{2}+a_{2}^{2}+\cdots+a_{8}^{2} \\
& \cdots \\
c_{n}= & a_{1}^{n}+a_{2}^{n}+\cdots+a_{8}^{n} \\
& \cdots
\end{aligned}
$$

in which $a_{1}, a_{2}, \cdots, a_{8}$ are real numbers not all equal to zero. Suppose that an infinite number of terms of the sequence $\left\{c_{n}\right\}$ are equal to zero. Find all natural numbers n for which $c_{n}=0$.

1967/6.

In a sports contest, there were m medals awarded on n successive days ($n>$ 1). On the first day, one medal and $1 / 7$ of the remaining $m-1$ medals were awarded. On the second day, two medals and $1 / 7$ of the now remaining medals were awarded; and so on. On the n-th and last day, the remaining n medals were awarded. How many days did the contest last, and how many medals were awarded altogether?

