Tenth International Olympiad, 1968

1968/1.

Prove that there is one and only one triangle whose side lengths are consecutive integers, and one of whose angles is twice as large as another.

1968/2.

Find all natural numbers x such that the product of their digits (in decimal notation) is equal to $x^{2}-10 x-22$.

1968/3.
Consider the system of equations

$$
\begin{aligned}
a x_{1}^{2}+b x_{1}+c= & x_{2} \\
a x_{2}^{2}+b x_{2}+c= & x_{3} \\
& \cdots \\
a x_{n-1}^{2}+b x_{n-1}+c= & x_{n} \\
a x_{n}^{2}+b x_{n}+c= & x_{1}
\end{aligned}
$$

with unknowns $x_{1}, x_{2}, \cdots, x_{n}$, where a, b, c are real and $a \neq 0$. Let $\Delta=$ $(b-1)^{2}-4 a c$. Prove that for this system
(a) if $\Delta<0$, there is no solution,
(b) if $\Delta=0$, there is exactly one solution,
(c) if $\Delta>0$, there is more than one solution.

1968/4.
Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which are the sides of a triangle.

1968/5.

Let f be a real-valued function defined for all real numbers x such that, for some positive constant a, the equation

$$
f(x+a)=\frac{1}{2}+\sqrt{f(x)-[f(x)]^{2}}
$$

holds for all x.
(a) Prove that the function f is periodic (i.e., there exists a positive number b such that $f(x+b)=f(x)$ for all $x)$.
(b) For $a=1$, give an example of a non-constant function with the required properties.

1968/6.

For every natural number n, evaluate the sum

$$
\sum_{k=0}^{\infty}\left[\frac{n+2^{k}}{2^{k+1}}\right]=\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\cdots+\left[\frac{n+2^{k}}{2^{k+1}}\right]+\cdots
$$

(The symbol $[x]$ denotes the greatest integer not exceeding x.)

