Eleventh International Olympiad, 1969

1969/1.

Prove that there are infinitely many natural numbers a with the following property: the number $z=n^{4}+a$ is not prime for any natura1 number n.

1969/2.

Let $a_{1}, a_{2}, \cdots, a_{n}$ be real constants, x a real variable, and

$$
\begin{aligned}
f(x)= & \cos \left(a_{1}+x\right)+\frac{1}{2} \cos \left(a_{2}+x\right)+\frac{1}{4} \cos \left(a_{3}+x\right) \\
& +\cdots+\frac{1}{2^{n-1}} \cos \left(a_{n}+x\right) .
\end{aligned}
$$

Given that $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, prove that $x_{2}-x_{1}=m \pi$ for some integer m.

1969/3.

For each value of $k=1,2,3,4,5$, find necessary and sufficient conditions on the number $a>0$ so that there exists a tetrahedron with k edges of length a, and the remaining $6-k$ edges of length 1 .

1969/4.
A semicircular arc γ is drawn on $A B$ as diameter. C is a point on γ other than A and B, and D is the foot of the perpendicular from C to $A B$. We consider three circles, $\gamma_{1}, \gamma_{2}, \gamma_{3}$, all tangent to the line $A B$. Of these, γ_{1} is inscribed in $\triangle A B C$, while γ_{2} and γ_{3} are both tangent to $C D$ and to γ, one on each side of $C D$. Prove that γ_{1}, γ_{2} and γ_{3} have a second tangent in common.

1969/5.

Given $n>4$ points in the plane such that no three are collinear. Prove that there are at least $\binom{n-3}{2}$ convex quadrilaterals whose vertices are four of the given points.

1969/6.

Prove that for all real numbers $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$, with $x_{1}>0, x_{2}>0, x_{1} y_{1}-$ $z_{1}^{2}>0, x_{2} y_{2}-z_{2}^{2}>0$, the inequality

$$
\frac{8}{\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)^{2}} \leq \frac{1}{x_{1} y_{1}-z_{1}^{2}}+\frac{1}{x_{2} y_{2}-z_{2}^{2}}
$$

is satisfied. Give necessary and sufficient conditions for equality.

