Twelfth International Olympiad, 1970

1970/1.
Let M be a point on the side $A B$ of $\triangle A B C$. Let r_{1}, r_{2} and r be the radii of the inscribed circles of triangles $A M C, B M C$ and $A B C$. Let q_{1}, q_{2} and q be the radii of the escribed circles of the same triangles that lie in the angle $A C B$. Prove that

$$
\frac{r_{1}}{q_{1}} \cdot \frac{r_{2}}{q_{2}}=\frac{r}{q} .
$$

1970/2.
Let a, b and n be integers greater than 1 , and let a and b be the bases of two number systems. A_{n-1} and A_{n} are numbers in the system with base a, and B_{n-1} and B_{n} are numbers in the system with base b; these are related as follows:

$$
\begin{aligned}
A_{n} & =x_{n} x_{n-1} \cdots x_{0}, A_{n-1}=x_{n-1} x_{n-2} \cdots x_{0} \\
B_{n} & =x_{n} x_{n-1} \cdots x_{0}, B_{n-1}=x_{n-1} x_{n-2} \cdots x_{0} \\
x_{n} & \neq 0, x_{n-1} \neq 0
\end{aligned}
$$

Prove:

$$
\frac{A_{n-1}}{A_{n}}<\frac{B_{n-1}}{B_{n}} \text { if and only if } a>b
$$

1970/3.
The real numbers $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ satisfy the condition:

$$
1=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots
$$

The numbers $b_{1}, b_{2}, \ldots, b_{n}, \ldots$ are defined by

$$
b_{n}=\sum_{k=1}^{n}\left(1-\frac{a_{k-1}}{a_{k}}\right) \frac{1}{\sqrt{a_{k}}} .
$$

(a) Prove that $0 \leq b_{n}<2$ for all n.
(b) Given c with $0 \leq c<2$, prove that there exist numbers a_{0}, a_{1}, \ldots with the above properties such that $b_{n}>c$ for large enough n.

1970/4.

Find the set of all positive integers n with the property that the set $\{n, n+$ $1, n+2, n+3, n+4, n+5\}$ can be partitioned into two sets such that the product of the numbers in one set equals the product of the numbers in the other set.

1970/5.

In the tetrahedron $A B C D$, angle $B D C$ is a right angle. Suppose that the foot H of the perpendicular from D to the plane $A B C$ is the intersection of the altitudes of $\triangle A B C$. Prove that

$$
(A B+B C+C A)^{2} \leq 6\left(A D^{2}+B D^{2}+C D^{2}\right)
$$

For what tetrahedra does equality hold?
1970/6.
In a plane there are 100 points, no three of which are collinear. Consider all possible triangles having these points as vertices. Prove that no more than 70% of these triangles are acute-angled.

