Thirteenth International Olympiad, 1971

1971/1.

Prove that the following assertion is true for n = 3 and n = 5, and that it is false for every other natural number n > 2:

If $a_1, a_2, ..., a_n$ are arbitrary real numbers, then $(a_1 - a_2)(a_1 - a_3) \cdots (a_1 - a_n) + (a_2 - a_1)(a_2 - a_3) \cdots (a_2 - a_n)$ $+ \cdots + (a_n - a_1)(a_n - a_2) \cdots (a_n - a_{n-1}) \ge 0$

1971/2.

Consider a convex polyhedron P_1 with nine vertices $A_1A_2, ..., A_9$; let P_i be the polyhedron obtained from P_1 by a translation that moves vertex A_1 to $A_i(i = 2, 3, ..., 9)$. Prove that at least two of the polyhedra $P_1, P_2, ..., P_9$ have an interior point in common.

1971/3.

Prove that the set of integers of the form $2^k - 3(k = 2, 3, ...)$ contains an infinite subset in which every two members are relatively prime.

1971/4.

All the faces of tetrahedron ABCD are acute-angled triangles. We consider all closed polygonal paths of the form XYZTX defined as follows: X is a point on edge AB distinct from A and B; similarly, Y, Z, T are interior points of edges BCCD, DA, respectively. Prove:

(a) If $\angle DAB + \angle BCD \neq \angle CDA + \angle ABC$, then among the polygonal paths, there is none of minimal length.

(b) If $\angle DAB + \angle BCD = \angle CDA + \angle ABC$, then there are infinitely many shortest polygonal paths, their common length being $2AC\sin(\alpha/2)$, where $\alpha = \angle BAC + \angle CAD + \angle DAB$.

1971/5.

Prove that for every natural number m, there exists a finite set S of points in a plane with the following property: For every point A in S, there are exactly m points in S which are at unit distance from A.

1971/6.

Let $A = (a_{ij})(i, j = 1, 2, ..., n)$ be a square matrix whose elements are nonnegative integers. Suppose that whenever an element $a_{ij} = 0$, the sum of the elements in the *i*th row and the *j*th column is $\geq n$. Prove that the sum of all the elements of the matrix is $\geq n^2/2$.