Thirteenth International Olympiad, 1971

1971/1.
Prove that the following assertion is true for $n=3$ and $n=5$, and that it is false for every other natural number $n>2$:
If $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrary real numbers, then
$\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{n}\right)+\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)$
$+\cdots+\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right) \geq 0$

1971/2.

Consider a convex polyhedron P_{1} with nine vertices $A_{1} A_{2}, \ldots, A_{9}$; let P_{i} be the polyhedron obtained from P_{1} by a translation that moves vertex A_{1} to $A_{i}(i=2,3, \ldots, 9)$. Prove that at least two of the polyhedra $P_{1}, P_{2}, \ldots, P_{9}$ have an interior point in common.

1971/3.

Prove that the set of integers of the form $2^{k}-3(k=2,3, \ldots)$ contains an infinite subset in which every two members are relatively prime.

1971/4.

All the faces of tetrahedron $A B C D$ are acute-angled triangles. We consider all closed polygonal paths of the form $X Y Z T X$ defined as follows: X is a point on edge $A B$ distinct from A and B; similarly, Y, Z, T are interior points of edges $B C C D, D A$, respectively. Prove:
(a) If $\angle D A B+\angle B C D \neq \angle C D A+\angle A B C$, then among the polygonal paths, there is none of minimal length.
(b) If $\angle D A B+\angle B C D=\angle C D A+\angle A B C$, then there are infinitely many shortest polygonal paths, their common length being $2 A C \sin (\alpha / 2)$, where $\alpha=\angle B A C+\angle C A D+\angle D A B$.

1971/5.

Prove that for every natural number m, there exists a finite set S of points in a plane with the following property: For every point A in S, there are exactly m points in S which are at unit distance from A.

1971/6.

Let $A=\left(a_{i j}\right)(i, j=1,2, \ldots, n)$ be a square matrix whose elements are nonnegative integers. Suppose that whenever an element $a_{i j}=0$, the sum of the elements in the i th row and the j th column is $\geq n$. Prove that the sum of all the elements of the matrix is $\geq n^{2} / 2$.

