## Eighteenth International Olympiad, 1976

1976/1.
In a plane convex quadrilateral of area 32, the sum of the lengths of two opposite sides and one diagonal is 16 . Determine all possible lengths of the other diagonal.

1976/2.
Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}\left(P_{j-1}(x)\right)$ for $j=2,3, \cdots$. Show that, for any positive integer $n$, the roots of the equation $P_{n}(x)=x$ are real and distinct.

## 1976/3.

A rectangular box can be filled completely with unit cubes. If one places as many cubes as possible, each with volume 2 , in the box, so that their edges are parallel to the edges of the box, one can fill exactly $40 \%$ of the box. Determine the possible dimensions of all such boxes.

## 1976/4.

Determine, with proof, the largest number which is the product of positive integers whose sum is 1976.

1976/5.
Consider the system of $p$ equations in $q=2 p$ unknowns $x_{1}, x_{2}, \cdots, x_{q}$ :

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 q} x_{q}= & 0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 q} x_{q}= & 0 \\
& \cdots \\
a_{p 1} x_{1}+a_{p 2} x_{2}+\cdots+a_{p q} x_{q}= & 0
\end{aligned}
$$

with every coefficient $a_{i j}$ member of the set $\{-1,0,1\}$. Prove that the system has a solution $\left(x_{1}, x_{2}, \cdots, x_{q}\right)$ such that
(a) all $x_{j}(j=1,2, \ldots, q)$ are integers,
(b) there is at least one value of $j$ for which $x_{j} \neq 0$,
(c) $\left|x_{j}\right| \leq q(j=1,2, \ldots, q)$.

1976/6.
A sequence $\left\{u_{n}\right\}$ is defined by

$$
u_{0}=2, u_{1}=5 / 2, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1} \text { for } n=1,2, \cdots
$$

Prove that for positive integers $n$,

$$
\left[u_{n}\right]=2^{\left[2^{n}-(-1)^{n}\right] / 3}
$$

where $[x]$ denotes the greatest integer $\leq x$.

