Twenty-second International Olympiad, 1981

$1981 / 1 . P$ is a point inside a given triangle $A B C . D, E, F$ are the feet of the perpendiculars from P to the lines $B C, C A, A B$ respectively. Find all P for which

$$
\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F}
$$

is least.
$1981 / 2$. Let $1 \leq r \leq n$ and consider all subsets of r elements of the set $\{1,2, \ldots, n\}$. Each of these subsets has a smallest member. Let $F(n, r)$ denote the arithmetic mean of these smallest numbers; prove that

$$
F(n, r)=\frac{n+1}{r+1}
$$

$1981 / 3$. Determine the maximum value of $m^{3}+n^{3}$, where m and n are integers satisfying $m, n \in\{1,2, \ldots, 1981\}$ and $\left(n^{2}-m n-m^{2}\right)^{2}=1$.
1981/4. (a) For which values of $n>2$ is there a set of n consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers?
(b) For which values of $n>2$ is there exactly one set having the stated property?
1981/5. Three congruent circles have a common point O and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle and the point O are collinear.
$1981 / 6$. The function $f(x, y)$ satisfies
(1) $f(0, y)=y+1$,
(2) $f(x+1,0)=f(x, 1)$,
(3) $f(x+1, y+1)=f(x, f(x+1, y))$,
for all non-negative integers x, y. Determine $f(4,1981)$.

