Twenty-fifth International Olympiad, 1984

1984/1. Prove that $0 \leq y z+z x+x y-2 x y z \leq 7 / 27$, where x, y and z are non-negative real numbers for which $x+y+z=1$.
1984/2. Find one pair of positive integers a and b such that:
(i) $a b(a+b)$ is not divisible by 7 ;
(ii) $(a+b)^{7}-a^{7}-b^{7}$ is divisible by 7^{7}.

Justify your answer.
1984/3. In the plane two different points O and A are given. For each point X of the plane, other than O, denote by $a(X)$ the measure of the angle between $O A$ and $O X$ in radians, counterclockwise from $O A(0 \leq a(X)<2 \pi)$. Let $C(X)$ be the circle with center O and radius of length $O X+a(X) / O X$. Each point of the plane is colored by one of a finite number of colors. Prove that there exists a point Y for which $a(Y)>0$ such that its color appears on the circumference of the circle $C(Y)$.
1984/4. Let $A B C D$ be a convex quadrilateral such that the line $C D$ is a tangent to the circle on $A B$ as diameter. Prove that the line $A B$ is a tangent to the circle on $C D$ as diameter if and only if the lines $B C$ and $A D$ are parallel.
1984/5. Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n vertices $(n>3)$, and let p be its perimeter. Prove that

$$
n-3<\frac{2 d}{p}<\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]-2
$$

where $[x]$ denotes the greatest integer not exceeding x.
$1984 / 6$. Let a, b, c and d be odd integers such that $0<a<b<c<d$ and $a d=b c$. Prove that if $a+d=2^{k}$ and $b+c=2^{m}$ for some integers k and m, then $a=1$.

