Twenty-sixth International Olympiad, 1985

1985/1. A circle has center on the side AB of the cyclic quadrilateral ABCD. The other three sides are tangent to the circle. Prove that AD + BC = AB. 1985/2. Let n and k be given relatively prime natural numbers, k < n. Each number in the set $M = \{1, 2, ..., n - 1\}$ is colored either blue or white. It is given that

(i) for each $i \in M$, both i and n - i have the same color;

(ii) for each $i \in M$, $i \neq k$, both i and |i - k| have the same color. Prove that all numbers in M must have the same color.

1985/3. For any polynomial $P(x) = a_0 + a_1x + \cdots + a_kx^k$ with integer coefficients, the number of coefficients which are odd is denoted by w(P). For $i = 0, 1, ..., let Q_i(x) = (1+x)^i$. Prove that if $i_1i_2, ..., i_n$ are integers such that $0 \le i_1 < i_2 < \cdots < i_n$, then

$$w(Q_{i_1} + Q_{i_2}, + + Q_{i_n}) \ge w(Q_{i_1}).$$

1985/4. Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater than 26. Prove that M contains at least one subset of four distinct elements whose product is the fourth power of an integer.

1985/5. A circle with center O passes through the vertices A and C of triangle ABC and intersects the segments AB and BC again at distinct points K and N, respectively. The circumscribed circles of the triangles ABC and EBN intersect at exactly two distinct points B and M. Prove that angle OMB is a right angle.

1985/6. For every real number x_1 , construct the sequence x_1, x_2, \dots by setting

$$x_{n+1} = x_n \left(x_n + \frac{1}{n} \right)$$
 for each $n \ge 1$.

Prove that there exists exactly one value of x_1 for which

$$0 < x_n < x_{n+1} < 1$$

for every n.