Twenty-sixth International Olympiad, 1985

1985/1. A circle has center on the side $A B$ of the cyclic quadrilateral $A B C D$. The other three sides are tangent to the circle. Prove that $A D+B C=A B$. 1985/2. Let n and k be given relatively prime natural numbers, $k<n$. Each number in the set $M=\{1,2, \ldots, n-1\}$ is colored either blue or white. It is given that
(i) for each $i \in M$, both i and $n-i$ have the same color;
(ii) for each $i \in M, i \neq k$, both i and $|i-k|$ have the same color. Prove that all numbers in M must have the same color.
$1985 / 3$. For any polynomial $P(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ with integer coefficients, the number of coefficients which are odd is denoted by $w(P)$. For $i=0,1, \ldots$, let $Q_{i}(x)=(1+x)^{i}$. Prove that if $i_{1} i_{2}, \ldots, i_{n}$ are integers such that $0 \leq i_{1}<i_{2}<\cdots<i_{n}$, then

$$
w\left(Q_{i_{1}}+Q_{i_{2}},++Q_{i_{n}}\right) \geq w\left(Q_{i_{1}}\right)
$$

1985/4. Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater than 26. Prove that M contains at least one subset of four distinct elements whose product is the fourth power of an integer. 1985/5. A circle with center O passes through the vertices A and C of triangle $A B C$ and intersects the segments $A B$ and $B C$ again at distinct points K and N, respectively. The circumscribed circles of the triangles $A B C$ and $E B N$ intersect at exactly two distinct points B and M. Prove that angle $O M B$ is a right angle.
$1985 / 6$. For every real number x_{1}, construct the sequence x_{1}, x_{2}, \ldots by setting

$$
x_{n+1}=x_{n}\left(x_{n}+\frac{1}{n}\right) \text { for each } n \geq 1
$$

Prove that there exists exactly one value of x_{1} for which

$$
0<x_{n}<x_{n+1}<1
$$

for every n.

